Internet Protocol Version 6

ICANN Meeting Survival Guide

Amrita Choudhury (left) and other ICANN meeting participants at ICANN55 in Marrakech.

As a three-time ICANN Fellow myself, the upcoming ICANN57 in Hyderabad, India will be the fourth ICANN Public Meeting that I’ve attended in person.

If ICANN57 is your first ICANN Meeting, I want to take this opportunity to give you a few pieces of advice:

  • First, make sure to attend the pre-ICANN webinar and the Newcomers Session. These will give you a quick crash course on key discussion topics and common acronyms used at ICANN Public Meetings.
  • Figure out what sessions you should attend by visiting the ICANN Information Booth. The staff at the booth can help you out with your queries about the meeting, especially on which sessions to attend and the location of each session.
  • Raise your questions at the ICANN Public Forum, as the ICANN Board members and community leaders will be there to answer your queries
  • And most importantly, bring a jacket and wear comfortable shoes – the rooms can get quite cold and you’ll be walking a lot!

While ICANN Meetings can be challenging to a newcomer, given the complexity of ICANN as an organization, attending and participating is a great way to learn and get involved. My first meeting experience was at ICANN41 in Singapore, where I attended as an ICANN Fellow. The meeting opened up the world of ICANN to me, and gave me an overview of the roles played by the different stakeholder groups within ICANN.

It was at my second meeting (ICANN42 in Dakar), where I also attended as an ICANN Fellow, that I got a better understanding of the common ICANN discussion topics, such as Internationalized Domain Names (IDNs), the New generic Top-Level Domains (gTLDs) Program and Internet Protocol version 6 (IPv6).

At my third ICANN Meeting (again, as an ICANN Fellow) at ICANN55 in Marrakech, I was already an experienced ICANN community member who follows ICANN updates closely. It provided me with the opportunity to catch up with old friends, exchange perspectives with community leaders and forge new relationships.

Attending the three meetings as an ICANN Fellow was an enlightening experience. I was given the opportunity to be part of the global community, to discuss issues related to the Internet world of names and numbers. It also encouraged me to become an ICANN Ambassador, which allows me to spread awareness about ICANN and Internet governance to the different stakeholders and communities in India. And along the way, I’ve made a lot of new friends.

I am looking forward to attending ICANN57 in Hyderabad, India, which is sure to be a memorable meeting. Not only because it is in my home country, India, but also because it is the first meeting since the expiration of the contract between ICANN and National Telecommunications and Information Administration (NTIA). Hyderabad is also a great travel destination, with many historical and cultural sites worth visiting. So do take some time to check them out.

96

Normal
0

false
false
false

EN-US
ZH-CN
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Table Normal”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:””;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:Calibri;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;}

I look forward to meeting you at ICANN57!

Read more here:: www.icann.org/news/blog.rss

DOCTOR IPV6: New ways of promoting IPv6 in Latin America and the Caribbean

Alejandro Acosta presenting the Doctor IPv6 project at LACNIC26/LACNOG16

During the LACNIC26/LACNOG16 in Costa Rica from 26-30 September 2016, Alejandro Acosta (R&D Coordinator at the Latin American and Caribbean Internet Addresses Registry – LACNIC) spoke about an interesting and innovative project to promote the Internet Protocol version 6 (IPv6) deployment in the Latin American and Caribbean region.

I had the pleasure to sit down with Alejandro and ask him additional details about the Doctor IPv6 project.

Alejandro Acosta presenting the Doctor IPv6 project at LACNIC26/LACNOG16

Alex Dans (AD): What´s the Doctor IPv6 project?

Alejandro Acosta (AA): Doctor IPv6 aims to be an innovative program to promote IPv6 in the LACNIC’s region.The idea of the project is to have a mailbox (a regular email address) which receives questions from the community. Then the questions are answered in an audio file and delivered to the community as a Podcast. In the end, the user can download the podcast in .mp3 or .ogg formats. Also, a player is embedded in the Doctor IPv6 portal.

We also believe this project will help us become closer with the community.

AD: Who can ask questions and who is answering them?

AA: All the community is invited to ask questions, we only request the questions be related to IPv6.

More than one person answers the questions we receive. LACNIC is trying to find the right specialist to provide answers. Having said this, suppose a question is related with routing, then we try to find a routing expert, if the question is about DNS, then we try to find a DNS expert and so on. Please note that all answers are given by people who want to collaborate and willing to help.

So far all questions have been answered and we will do our best to keep it this way but it’s impossible for us to guarantee an answer for every question. This scenario is quite similar as sending a question to a mailing list, nobody has any obligation to answer any question

AD: What kind of questions do you receive?

AA: As of now, we have received 14 questions that vary from basic to advanced levels. We think we will reach about 25 questions at the end of this year. Regarding the topics, we have received questions about: security, v6 in universities, routing, implementing v6 Labs, IPv6 address plan and more.

AD: This is an original way of promoting IPv6 deployment. Does this initiative exist in other regions?

AA: So far we are not aware of this initiative in other regions. There are other famous podcasts but not necessarily related to IPv6 such as: Ask Mr. DNS Podcast and podcasts from packetpushers.net.

AD: What message would you like to share with the Latin American and Caribbean Internet community?

AA: At this time there is about 50-55% Internet penetration in LAC. The right way to reach the other 45-50% is to do it with IPv6. Internet service providers that do not implement IPv6 are in danger of losing customers. Countries that do not implement IPv6 are in risk of getting isolated.

……

Alejandro’s presentation is available in Spanish, here.

Visit LACNIC’s LAB website for more information.

Read more here:: www.icann.org/news/blog.rss

RFC 1885 – Internet Control Message Protocol (ICMPv6) for IPv6 (OBSOLETE)

 
Network Working Group             A. Conta, Digital Equipment Corporation
Request for Comments: 1885 S. Deering, Xerox PARC
Category: Standards Track December 1995

Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6)
Specification

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document specifies a set of Internet Control Message Protocol
(ICMP) messages for use with version 6 of the Internet Protocol
(IPv6). The Internet Group Management Protocol (IGMP) messages
specified in STD 5, RFC 1112 have been merged into ICMP, for IPv6,
and are included in this document.

Table of Contents

1. Introduction........................................3

2. ICMPv6 (ICMP for IPv6)..............................3

2.1 Message General Format.......................3

2.2 Message Source Address Determination.........4

2.3 Message Checksum Calculation.................5

2.4 Message Processing Rules.....................5

3. ICMPv6 Error Messages...............................8

3.1 Destination Unreachable Message..............8

3.2 Packet Too Big Message......................10

3.3 Time Exceeded Message.......................11

3.4 Parameter Problem Message...................12

4. ICMPv6 Informational Messages......................14

4.1 Echo Request Message........................14

4.2 Echo Reply Message..........................15

4.3 Group Membership Messages...................17

5. References.........................................19

6. Acknowledgements...................................19

7. Security Considerations............................19

Authors' Addresses....................................20

1. Introduction

The Internet Protocol, version 6 (IPv6) is a new version of IP. IPv6
uses the Internet Control Message Protocol (ICMP) as defined for IPv4
[RFC-792], with a number of changes. The Internet Group Membership
Protocol (IGMP) specified for IPv4 [RFC-1112] has also been revised
and has been absorbed into ICMP for IPv6. The resulting protocol is
called ICMPv6, and has an IPv6 Next Header value of 58.

This document describes the format of a set of control messages used
in ICMPv6. It does not describe the procedures for using these
messages to achieve functions like Path MTU discovery or multicast
group membership maintenance; such procedures are described in other
documents (e.g., [RFC-1112, RFC-1191]). Other documents may also
introduce additional ICMPv6 message types, such as Neighbor Discovery
messages [IPv6-DISC], subject to the general rules for ICMPv6
messages given in section 2 of this document.

Terminology defined in the IPv6 specification [IPv6] and the IPv6
Routing and Addressing specification [IPv6-ADDR] applies to this
document as well.

2. ICMPv6 (ICMP for IPv6)

ICMPv6 is used by IPv6 nodes to report errors encountered in
processing packets, and to perform other internet-layer functions,
such as diagnostics (ICMPv6 "ping") and multicast membership
reporting. ICMPv6 is an integral part of IPv6 and MUST be fully
implemented by every IPv6 node.

2.1 Message General Format

ICMPv6 messages are grouped into two classes: error messages and
informational messages. Error messages are identified as such by
having a zero in the high-order bit of their message Type field
values. Thus, error messages have message Types from 0 to 127;
informational messages have message Types from 128 to 255.

This document defines the message formats for the following ICMPv6
messages:

ICMPv6 error messages:

1 Destination Unreachable (see section 3.1)
2 Packet Too Big (see section 3.2)
3 Time Exceeded (see section 3.3)
4 Parameter Problem (see section 3.4)

ICMPv6 informational messages:

128 Echo Request (see section 4.1)
129 Echo Reply (see section 4.2)
130 Group Membership Query (see section 4.3)
131 Group Membership Report (see section 4.3)
132 Group Membership Reduction (see section 4.3)

Every ICMPv6 message is preceded by an IPv6 header and zero or more
IPv6 extension headers. The ICMPv6 header is identified by a Next
Header value of 58 in the immediately preceding header. (NOTE: this
is different than the value used to identify ICMP for IPv4.)

The ICMPv6 messages have the following general format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Message Body +
| |

The type field indicates the type of the message. Its value
determines the format of the remaining data.

The code field depends on the message type. It is used to create an
additional level of message granularity.

The checksum field is used to detect data corruption in the ICMPv6
message and parts of the IPv6 header.

2.2 Message Source Address Determination

A node that sends an ICMPv6 message has to determine both the Source
and Destination IPv6 Addresses in the IPv6 header before calculating
the checksum. If the node has more than one unicast address, it must
choose the Source Address of the message as follows:

(a) If the message is a response to a message sent to one of the
node's unicast addresses, the Source Address of the reply must
be that same address.

(b) If the message is a response to a message sent to a multicast or
anycast group in which the node is a member, the Source Address
of the reply must be a unicast address belonging to the
interface on which the multicast or anycast packet was received.

(c) If the message is a response to a message sent to an address
that does not belong to the node, the Source Address should be
that unicast address belonging to the node that will be most
helpful in diagnosing the error. For example, if the message is
a response to a packet forwarding action that cannot complete
successfully, the Source Address should be a unicast address
belonging to the interface on which the packet forwarding
failed.

(d) Otherwise, the node's routing table must be examined to
determine which interface will be used to transmit the message
to its destination, and a unicast address belonging to that
interface must be used as the Source Address of the message.

2.3 Message Checksum Calculation

The checksum is the 16-bit one's complement of the one's complement
sum of the entire ICMPv6 message starting with the ICMPv6 message
type field, prepended with a "pseudo-header" of IPv6 header fields,
as specified in [IPv6, section 8.1]. The Next Header value used in
the pseudo-header is 58. (NOTE: the inclusion of a pseudo-header in
the ICMPv6 checksum is a change from IPv4; see [IPv6] for the
rationale for this change.)

For computing the checksum, the checksum field is set to zero.

2.4 Message Processing Rules

Implementations MUST observe the following rules when processing
ICMPv6 messages (from [RFC-1122]):

(a) If an ICMPv6 error message of unknown type is received, it MUST
be passed to the upper layer.

(b) If an ICMPv6 informational message of unknown type is received,
it MUST be silently discarded.

(c) Every ICMPv6 error message (type < 128) includes as much of the
IPv6 offending (invoking) packet (the packet that caused the
error) as will fit without making the error message packet
exceed 576 octets.

(d) In those cases where the internet-layer protocol is required to
pass an ICMPv6 error message to the upper-layer protocol, the
upper-layer protocol type is extracted from the original packet
(contained in the body of the ICMPv6 error message) and used to
select the appropriate upper-layer protocol entity to handle the
error.

If the original packet had an unusually large amount of
extension headers, it is possible that the upper-layer protocol
type may not be present in the ICMPv6 message, due to truncation
of the original packet to meet the 576-octet limit. In that
case, the error message is silently dropped after any IPv6-layer
processing.

(e) An ICMPv6 error message MUST NOT be sent as a result of
receiving:

(e.1) an ICMPv6 error message, or

(e.2) a packet destined to an IPv6 multicast address (there are
two exceptions to this rule: (1) the Packet Too Big
Message - Section 3.2 - to allow Path MTU discovery to
work for IPv6 multicast, and (2) the Parameter Problem
Message, Code 2 - Section 3.4 - reporting an unrecognized
IPv6 option that has the Option Type highest-order two
bits set to 10), or

(e.3) a packet sent as a link-layer multicast, (the exception
from e.2 applies to this case too), or

(e.4) a packet sent as a link-layer broadcast, (the exception
from e.2 applies to this case too), or

(e.5) a packet whose source address does not uniquely identify
a single node -- e.g., the IPv6 Unspecified Address, an
IPv6 multicast address, or an address known by the ICMP
message sender to be an IPv6 anycast address.

(f) Finally, to each sender of an erroneous data packet, an IPv6
node MUST limit the rate of ICMPv6 error messages sent, in order
to limit the bandwidth and forwarding costs incurred by the
error messages when a generator of erroneous packets does not
respond to those error messages by ceasing its transmissions.

There are a variety of ways of implementing the rate-limiting
function, for example:

(f.1) Timer-based - for example, limiting the rate of
transmission of error messages to a given source, or to
any source, to at most once every T milliseconds.

(f.2) Bandwidth-based - for example, limiting the rate at
which error messages are sent from a particular interface
to some fraction F of the attached link's bandwidth.

The limit parameters (e.g., T or F in the above examples) MUST
be configurable for the node, with a conservative default value
(e.g., T = 1 second, NOT 0 seconds, or F = 2 percent, NOT 100
percent).

The following sections describe the message formats for the above
ICMPv6 messages.

3. ICMPv6 Error Messages

3.1 Destination Unreachable Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding 576 octets |

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 1

Code 0 - no route to destination
1 - communication with destination
administratively prohibited
2 - not a neighbor
3 - address unreachable
4 - port unreachable

Unused This field is unused for all code values.
It must be initialized to zero by the sender
and ignored by the receiver.
Description

A Destination Unreachable message SHOULD be generated by a router, or
by the IPv6 layer in the originating node, in response to a packet
that cannot be delivered to its destination address for reasons other
than congestion. (An ICMPv6 message MUST NOT be generated if a
packet is dropped due to congestion.)

If the reason for the failure to deliver is lack of a matching entry
in the forwarding node's routing table, the Code field is set to 0
(NOTE: this error can occur only in nodes that do not hold a "default
route" in their routing tables).

If the reason for the failure to deliver is administrative
prohibition, e.g., a "firewall filter", the Code field is set to 1.

If the reason for the failure to deliver is that the next destination
address in the Routing header is not a neighbor of the processing
node but the "strict" bit is set for that address, then the Code
field is set to 2.

If there is any other reason for the failure to deliver, e.g.,
inability to resolve the IPv6 destination address into a
corresponding link address, or a link-specific problem of some sort,
then the Code field is set to 3.

A destination node SHOULD send a Destination Unreachable message with
Code 4 in response to a packet for which the transport protocol
(e.g., UDP) has no listener, if that transport protocol has no
alternative means to inform the sender.

Upper layer notification

A node receiving the ICMPv6 Destination Unreachable message MUST
notify the upper-layer protocol.

3.2 Packet Too Big Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding 576 octets |

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 2

Code 0

MTU The Maximum Transmission Unit of the next-hop link.

Description

A Packet Too Big MUST be sent by a router in response to a packet
that it cannot forward because the packet is larger than the MTU of
the outgoing link. The information in this message is used as part
of the Path MTU Discovery process [RFC-1191].

Sending a Packet Too Big Message makes an exception to one of the
rules of when to send an ICMPv6 error message, in that unlike other
messages, it is sent in response to a packet received with an IPv6
multicast destination address, or a link-layer multicast or link-
layer broadcast address.

Upper layer notification

An incoming Packet Too Big message MUST be passed to the upper-layer
protocol.

3.3 Time Exceeded Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding 576 octets |

IPv6 Fields:

Destination Address
Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 3

Code 0 - hop limit exceeded in transit

1 - fragment reassembly time exceeded

Unused This field is unused for all code values.
It must be initialized to zero by the sender
and ignored by the receiver.

Description

If a router receives a packet with a Hop Limit of zero, or a router
decrements a packet's Hop Limit to zero, it MUST discard the packet
and send an ICMPv6 Time Exceeded message with Code 0 to the source of
the packet. This indicates either a routing loop or too small an
initial Hop Limit value.

The router sending an ICMPv6 Time Exceeded message with Code 0 SHOULD
consider the receiving interface of the packet as the interface on
which the packet forwarding failed in following rule (d) for
selecting the Source Address of the message.

Upper layer notification

An incoming Time Exceeded message MUST be passed to the upper-layer
protocol.

3.4 Parameter Problem Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding 576 octets |

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 4

Code 0 - erroneous header field encountered

1 - unrecognized Next Header type encountered

2 - unrecognized IPv6 option encountered

Pointer Identifies the octet offset within the
invoking packet where the error was detected.

The pointer will point beyond the end of the ICMPv6
packet if the field in error is beyond what can fit
in the 576-byte limit of an ICMPv6 error message.

Description

If an IPv6 node processing a packet finds a problem with a field in
the IPv6 header or extension headers such that it cannot complete
processing the packet, it MUST discard the packet and SHOULD send an
ICMPv6 Parameter Problem message to the packet's source, indicating
the type and location of the problem.

The pointer identifies the octet of the original packet's header
where the error was detected. For example, an ICMPv6 message with
Type field = 4, Code field = 1, and Pointer field = 40 would indicate

that the IPv6 extension header following the IPv6 header of the
original packet holds an unrecognized Next Header field value.

Upper layer notification

A node receiving this ICMPv6 message MUST notify the upper-layer
protocol.

4. ICMPv6 Informational Messages

4.1 Echo Request Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-

IPv6 Fields:

Destination Address

Any legal IPv6 address.

ICMPv6 Fields:

Type 128

Code 0

Identifier An identifier to aid in matching Echo Replies
to this Echo Request. May be zero.

Sequence Number

A sequence number to aid in matching Echo Replies
to this Echo Request. May be zero.

Data Zero or more octets of arbitrary data.

Description

Every node MUST implement an ICMPv6 Echo responder function that
receives Echo Requests and sends corresponding Echo Replies. A node
SHOULD also implement an application-layer interface for sending Echo
Requests and receiving Echo Replies, for diagnostic purposes.

Upper layer notification

A node receiving this ICMPv6 message MAY notify the upper-layer
protocol.

4.2 Echo Reply Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
Echo Request packet.

ICMPv6 Fields:

Type 129

Code 0

Identifier The identifier from the invoking Echo Request message.

Sequence The sequence number from the invoking Echo Request
Number message.

Data The data from the invoking Echo Request message.

Description

Every node MUST implement an ICMPv6 Echo responder function that
receives Echo Requests and sends corresponding Echo Replies. A node
SHOULD also implement an application-layer interface for sending Echo
Requests and receiving Echo Replies, for diagnostic purposes.

The source address of an Echo Reply sent in response to a unicast
Echo Request message MUST be the same as the destination address of
that Echo Request message.

An Echo Reply SHOULD be sent in response to an Echo Request message
sent to an IPv6 multicast address. The source address of the reply
MUST be a unicast address belonging to the interface on which the
multicast Echo Request message was received.

The data received in the ICMPv6 Echo Request message MUST be returned
entirely and unmodified in the ICMPv6 Echo Reply message, unless the
Echo Reply would exceed the MTU of the path back to the Echo
requester, in which case the data is truncated to fit that path MTU.

Upper layer notification

Echo Reply messages MUST be passed to the ICMPv6 user interface,
unless the corresponding Echo Request originated in the IP layer.

4.3 Group Membership Messages

The ICMPv6 Group Membership Messages have the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum Response Delay | Unused |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| Multicast |
+ +
| Address |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IPv6 Fields:

Destination Address

In a Group Membership Query message, the multicast
address of the group being queried, or the Link-Local
All-Nodes multicast address.

In a Group Membership Report or a Group Membership
Reduction message, the multicast address of the
group being reported or terminated.

Hop Limit 1

ICMPv6 Fields:

Type 130 - Group Membership Query
131 - Group Membership Report
132 - Group Membership Reduction

Code 0

Maximum Response Delay

In Query messages, the maximum time that responding
Report messages may be delayed, in milliseconds.

In Report and Reduction messages, this field is
is initialized to zero by the sender and ignored by
receivers.

Unused Initialized to zero by the sender; ignored by receivers.

Multicast Address

The address of the multicast group about which the
message is being sent. In Query messages, the Multicast
Address field may be zero, implying a query for all
groups.

Description

The ICMPv6 Group Membership messages are used to convey information
about multicast group membership from nodes to their neighboring
routers. The details of their usage is given in [RFC-1112].

5. References

[IPv6] Deering, S., and R. Hinden, "Internet Protocol, Version
6, Specification", RFC 1883, Xerox PARC, Ipsilon
Networks, December 1995.

[IPv6-ADDR] Hinden, R., and S. Deering, Editors, "IP Version 6
Addressing Architecture", RFC 1884, Ipsilon Networks,
Xerox PARC, December 1995.

[IPv6-DISC] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)", Work in Progress.

[RFC-792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, USC/Information Sciences Institute, September
1981.

[RFC-1112] Deering, S., "Host Extensions for IP Multicasting", STD
5, RFC 1112, Stanford University, August 1989.

[RFC-1122] Braden, R., "Requirements for Internet Hosts -
Communication Layers", STD 3, RFC 1122, USC/Information
Sciences Institute, October 1989.

[RFC-1191] Mogul, J., and S. Deering, "Path MTU Discovery", RFC
1191, DECWRL, Stanford University, November 1990.

6. Acknowledgements

The document is derived from previous ICMP drafts of the SIPP and
IPng working group.

The IPng working group and particularly Robert Elz, Jim Bound, Bill
Simpson, Thomas Narten, Charlie Lynn, Bill Fink, and Scott Bradner
(in chronological order) provided extensive review information and
feedback.

7. Security Considerations

Security issues are not discussed in this memo.

Authors' Addresses:

Alex Conta Stephen Deering
Digital Equipment Corporation Xerox Palo Alto Research Center
110 Spitbrook Rd 3333 Coyote Hill Road
Nashua, NH 03062 Palo Alto, CA 94304

Phone: +1-603-881-0744 Phone: +1-415-812-4839
EMail: conta@zk3.dec.com EMail: deering@parc.xerox.com


RFC 2463 – Internet Control Message Protocol (ICMPv6)

 
Network Working Group                                           A. Conta
Request for Comments: 2463 Lucent
Obsoletes: 1885 S. Deering
Category: Standards Track Cisco Systems
December 1998

Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6)
Specification

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

This document specifies a set of Internet Control Message Protocol
(ICMP) messages for use with version 6 of the Internet Protocol
(IPv6).

Table of Contents

1. Introduction........................................2
2. ICMPv6 (ICMP for IPv6)..............................2
2.1 Message General Format.......................2
2.2 Message Source Address Determination.........3
2.3 Message Checksum Calculation.................4
2.4 Message Processing Rules.....................4
3. ICMPv6 Error Messages...............................6
3.1 Destination Unreachable Message..............6
3.2 Packet Too Big Message...................... 8
3.3 Time Exceeded Message....................... 9
3.4 Parameter Problem Message...................10
4. ICMPv6 Informational Messages......................11
4.1 Echo Request Message........................11
4.2 Echo Reply Message..........................12
5. Security Considerations............................13
6. References.........................................14
7. Acknowledgments....................................15
8. Authors' Addresses.................................16
Appendix A - Changes since RFC 1885...................17
Full Copyright Statement..............................18

1. Introduction


The Internet Protocol, version 6 (IPv6) is a new version of IP. IPv6
uses the Internet Control Message Protocol (ICMP) as defined for IPv4
[RFC-792], with a number of changes. The resulting protocol is
called ICMPv6, and has an IPv6 Next Header value of 58.

This document describes the format of a set of control messages used
in ICMPv6. It does not describe the procedures for using these
messages to achieve functions like Path MTU discovery; such
procedures are described in other documents (e.g., [PMTU]). Other
documents may also introduce additional ICMPv6 message types, such as
Neighbor Discovery messages [IPv6-DISC], subject to the general rules
for ICMPv6 messages given in section 2 of this document.

Terminology defined in the IPv6 specification [IPv6] and the IPv6
Routing and Addressing specification [IPv6-ADDR] applies to this
document as well.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC-2119].

2. ICMPv6 (ICMP for IPv6)


ICMPv6 is used by IPv6 nodes to report errors encountered in
processing packets, and to perform other internet-layer functions,
such as diagnostics (ICMPv6 "ping"). ICMPv6 is an integral part of
IPv6 and MUST be fully implemented by every IPv6 node.

2.1 Message General Format


ICMPv6 messages are grouped into two classes: error messages and
informational messages. Error messages are identified as such by
having a zero in the high-order bit of their message Type field
values. Thus, error messages have message Types from 0 to 127;
informational messages have message Types from 128 to 255.

This document defines the message formats for the following ICMPv6
messages:

ICMPv6 error messages:

1 Destination Unreachable (see section 3.1)
2 Packet Too Big (see section 3.2)
3 Time Exceeded (see section 3.3)
4 Parameter Problem (see section 3.4)

ICMPv6 informational messages:

128 Echo Request (see section 4.1)
129 Echo Reply (see section 4.2)

Every ICMPv6 message is preceded by an IPv6 header and zero or more
IPv6 extension headers. The ICMPv6 header is identified by a Next
Header value of 58 in the immediately preceding header. (NOTE: this
is different than the value used to identify ICMP for IPv4.)

The ICMPv6 messages have the following general format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Message Body +
| |

The type field indicates the type of the message. Its value
determines the format of the remaining data.

The code field depends on the message type. It is used to create an
additional level of message granularity.

The checksum field is used to detect data corruption in the ICMPv6
message and parts of the IPv6 header.

2.2 Message Source Address Determination


A node that sends an ICMPv6 message has to determine both the Source
and Destination IPv6 Addresses in the IPv6 header before calculating
the checksum. If the node has more than one unicast address, it must
choose the Source Address of the message as follows:

(a) If the message is a response to a message sent to one of the
node's unicast addresses, the Source Address of the reply must
be that same address.

(b) If the message is a response to a message sent to a multicast or
anycast group in which the node is a member, the Source Address
of the reply must be a unicast address belonging to the
interface on which the multicast or anycast packet was received.

(c) If the message is a response to a message sent to an address
that does not belong to the node, the Source Address should be
that unicast address belonging to the node that will be most
helpful in diagnosing the error. For example, if the message is
a response to a packet forwarding action that cannot complete
successfully, the Source Address should be a unicast address
belonging to the interface on which the packet forwarding
failed.

(d) Otherwise, the node's routing table must be examined to
determine which interface will be used to transmit the message
to its destination, and a unicast address belonging to that
interface must be used as the Source Address of the message.

2.3 Message Checksum Calculation


The checksum is the 16-bit one's complement of the one's complement
sum of the entire ICMPv6 message starting with the ICMPv6 message
type field, prepended with a "pseudo-header" of IPv6 header fields,
as specified in [IPv6, section 8.1]. The Next Header value used in
the pseudo-header is 58. (NOTE: the inclusion of a pseudo-header in
the ICMPv6 checksum is a change from IPv4; see [IPv6] for the
rationale for this change.)

For computing the checksum, the checksum field is set to zero.

2.4 Message Processing Rules


Implementations MUST observe the following rules when processing
ICMPv6 messages (from [RFC-1122]):

(a) If an ICMPv6 error message of unknown type is received, it MUST
be passed to the upper layer.

(b) If an ICMPv6 informational message of unknown type is received,
it MUST be silently discarded.

(c) Every ICMPv6 error message (type < 128) includes as much of the
IPv6 offending (invoking) packet (the packet that caused the
error) as will fit without making the error message packet
exceed the minimum IPv6 MTU [IPv6].

(d) In those cases where the internet-layer protocol is required to
pass an ICMPv6 error message to the upper-layer process, the
upper-layer protocol type is extracted from the original packet
(contained in the body of the ICMPv6 error message) and used to
select the appropriate upper-layer process to handle the error.

If the original packet had an unusually large amount of
extension headers, it is possible that the upper-layer protocol
type may not be present in the ICMPv6 message, due to truncation
of the original packet to meet the minimum IPv6 MTU [IPv6]
limit. In that case, the error message is silently dropped
after any IPv6-layer processing.

(e) An ICMPv6 error message MUST NOT be sent as a result of
receiving:

(e.1) an ICMPv6 error message, or

(e.2) a packet destined to an IPv6 multicast address (there are
two exceptions to this rule: (1) the Packet Too Big
Message - Section 3.2 - to allow Path MTU discovery to
work for IPv6 multicast, and (2) the Parameter Problem
Message, Code 2 - Section 3.4 - reporting an unrecognized
IPv6 option that has the Option Type highest-order two
bits set to 10), or

(e.3) a packet sent as a link-layer multicast, (the exception
from e.2 applies to this case too), or

(e.4) a packet sent as a link-layer broadcast, (the exception
from e.2 applies to this case too), or

(e.5) a packet whose source address does not uniquely identify
a single node -- e.g., the IPv6 Unspecified Address, an
IPv6 multicast address, or an address known by the ICMP
message sender to be an IPv6 anycast address.

(f) Finally, in order to limit the bandwidth and forwarding costs
incurred sending ICMPv6 error messages, an IPv6 node MUST limit
the rate of ICMPv6 error messages it sends. This situation may
occur when a source sending a stream of erroneous packets fails
to heed the resulting ICMPv6 error messages. There are a
variety of ways of implementing the rate-limiting function, for
example:

(f.1) Timer-based - for example, limiting the rate of
transmission of error messages to a given source, or to
any source, to at most once every T milliseconds.

(f.2) Bandwidth-based - for example, limiting the rate at which
error messages are sent from a particular interface to
some fraction F of the attached link's bandwidth.

The limit parameters (e.g., T or F in the above examples) MUST
be configurable for the node, with a conservative default value
(e.g., T = 1 second, NOT 0 seconds, or F = 2 percent, NOT 100
percent).

The following sections describe the message formats for the above
ICMPv6 messages.

3. ICMPv6 Error Messages


3.1 Destination Unreachable Message


0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 1

Code 0 - no route to destination
1 - communication with destination
administratively prohibited
2 - (not assigned)
3 - address unreachable
4 - port unreachable

Unused This field is unused for all code values.
It must be initialized to zero by the sender
and ignored by the receiver.

Description

A Destination Unreachable message SHOULD be generated by a router, or
by the IPv6 layer in the originating node, in response to a packet
that cannot be delivered to its destination address for reasons other
than congestion. (An ICMPv6 message MUST NOT be generated if a
packet is dropped due to congestion.)

If the reason for the failure to deliver is lack of a matching entry
in the forwarding node's routing table, the Code field is set to 0
(NOTE: this error can occur only in nodes that do not hold a "default
route" in their routing tables).

If the reason for the failure to deliver is administrative
prohibition, e.g., a "firewall filter", the Code field is set to 1.

If there is any other reason for the failure to deliver, e.g.,
inability to resolve the IPv6 destination address into a
corresponding link address, or a link-specific problem of some sort,
then the Code field is set to 3.

A destination node SHOULD send a Destination Unreachable message with
Code 4 in response to a packet for which the transport protocol
(e.g., UDP) has no listener, if that transport protocol has no
alternative means to inform the sender.

Upper layer notification

A node receiving the ICMPv6 Destination Unreachable message MUST
notify the upper-layer process.

3.2 Packet Too Big Message


0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 2

Code Set to 0 (zero) by the sender and ignored by the
receiver

MTU The Maximum Transmission Unit of the next-hop link.

Description

A Packet Too Big MUST be sent by a router in response to a packet
that it cannot forward because the packet is larger than the MTU of
the outgoing link. The information in this message is used as part
of the Path MTU Discovery process [PMTU].

Sending a Packet Too Big Message makes an exception to one of the
rules of when to send an ICMPv6 error message, in that unlike other
messages, it is sent in response to a packet received with an IPv6
multicast destination address, or a link-layer multicast or link-
layer broadcast address.

Upper layer notification

An incoming Packet Too Big message MUST be passed to the upper-layer
process.

3.3 Time Exceeded Message


0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

IPv6 Fields:

Destination Address
Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 3

Code 0 - hop limit exceeded in transit

1 - fragment reassembly time exceeded

Unused This field is unused for all code values.
It must be initialized to zero by the sender
and ignored by the receiver.

Description

If a router receives a packet with a Hop Limit of zero, or a router
decrements a packet's Hop Limit to zero, it MUST discard the packet
and send an ICMPv6 Time Exceeded message with Code 0 to the source of
the packet. This indicates either a routing loop or too small an
initial Hop Limit value.

The rules for selecting the Source Address of this message are
defined in section 2.2.

Upper layer notification

An incoming Time Exceeded message MUST be passed to the upper-layer
process.

3.4 Parameter Problem Message


0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
packet.

ICMPv6 Fields:

Type 4

Code 0 - erroneous header field encountered

1 - unrecognized Next Header type encountered

2 - unrecognized IPv6 option encountered

Pointer Identifies the octet offset within the
invoking packet where the error was detected.

The pointer will point beyond the end of the ICMPv6
packet if the field in error is beyond what can fit
in the maximum size of an ICMPv6 error message.

Description

If an IPv6 node processing a packet finds a problem with a field in
the IPv6 header or extension headers such that it cannot complete
processing the packet, it MUST discard the packet and SHOULD send an
ICMPv6 Parameter Problem message to the packet's source, indicating
the type and location of the problem.

The pointer identifies the octet of the original packet's header
where the error was detected. For example, an ICMPv6 message with
Type field = 4, Code field = 1, and Pointer field = 40 would indicate

that the IPv6 extension header following the IPv6 header of the
original packet holds an unrecognized Next Header field value.

Upper layer notification

A node receiving this ICMPv6 message MUST notify the upper-layer
process.

4. ICMPv6 Informational Messages


4.1 Echo Request Message


0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-

IPv6 Fields:

Destination Address

Any legal IPv6 address.

ICMPv6 Fields:

Type 128

Code 0

Identifier An identifier to aid in matching Echo Replies
to this Echo Request. May be zero.

Sequence Number

A sequence number to aid in matching Echo Replies
to this Echo Request. May be zero.

Data Zero or more octets of arbitrary data.

Description

Every node MUST implement an ICMPv6 Echo responder function that
receives Echo Requests and sends corresponding Echo Replies. A node
SHOULD also implement an application-layer interface for sending Echo
Requests and receiving Echo Replies, for diagnostic purposes.

Upper layer notification

Echo Request messages MAY be passed to processes receiving ICMP
messages.

4.2 Echo Reply Message


0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-

IPv6 Fields:

Destination Address

Copied from the Source Address field of the invoking
Echo Request packet.

ICMPv6 Fields:

Type 129

Code 0

Identifier The identifier from the invoking Echo Request message.

Sequence The sequence number from the invoking Echo Request
Number message.

Data The data from the invoking Echo Request message.

Description

Every node MUST implement an ICMPv6 Echo responder function that
receives Echo Requests and sends corresponding Echo Replies. A node
SHOULD also implement an application-layer interface for sending Echo
Requests and receiving Echo Replies, for diagnostic purposes.

The source address of an Echo Reply sent in response to a unicast
Echo Request message MUST be the same as the destination address of
that Echo Request message.

An Echo Reply SHOULD be sent in response to an Echo Request message
sent to an IPv6 multicast address. The source address of the reply
MUST be a unicast address belonging to the interface on which the
multicast Echo Request message was received.

The data received in the ICMPv6 Echo Request message MUST be returned
entirely and unmodified in the ICMPv6 Echo Reply message.

Upper layer notification

Echo Reply messages MUST be passed to the process that originated an
Echo Request message. It may be passed to processes that did not
originate the Echo Request message.

5. Security Considerations


5.1 Authentication and Encryption of ICMP messages


ICMP protocol packet exchanges can be authenticated using the IP
Authentication Header [IPv6-AUTH]. A node SHOULD include an
Authentication Header when sending ICMP messages if a security
association for use with the IP Authentication Header exists for the
destination address. The security associations may have been created
through manual configuration or through the operation of some key
management protocol.

Received Authentication Headers in ICMP packets MUST be verified for
correctness and packets with incorrect authentication MUST be ignored
and discarded.

It SHOULD be possible for the system administrator to configure a
node to ignore any ICMP messages that are not authenticated using
either the Authentication Header or Encapsulating Security Payload.
Such a switch SHOULD default to allowing unauthenticated messages.

Confidentiality issues are addressed by the IP Security Architecture
and the IP Encapsulating Security Payload documents [IPv6-SA, IPv6-
ESP].

5.2 ICMP Attacks


ICMP messages may be subject to various attacks. A complete
discussion can be found in the IP Security Architecture [IPv6-SA]. A
brief discussion of such attacks and their prevention is as follows:

1. ICMP messages may be subject to actions intended to cause the
receiver believe the message came from a different source than the
message originator. The protection against this attack can be
achieved by applying the IPv6 Authentication mechanism [IPv6-Auth]
to the ICMP message.

2. ICMP messages may be subject to actions intended to cause the
message or the reply to it go to a destination different than the
message originator's intention. The ICMP checksum calculation
provides a protection mechanism against changes by a malicious
interceptor in the destination and source address of the IP packet
carrying that message, provided the ICMP checksum field is
protected against change by authentication [IPv6-Auth] or
encryption [IPv6-ESP] of the ICMP message.

3. ICMP messages may be subject to changes in the message fields, or
payload. The authentication [IPv6-Auth] or encryption [IPv6-ESP]
of the ICMP message is a protection against such actions.

4. ICMP messages may be used as attempts to perform denial of service
attacks by sending back to back erroneous IP packets. An
implementation that correctly followed section 2.4, paragraph (f)
of this specifications, would be protected by the ICMP error rate
limiting mechanism.

6. References


[IPv6] Deering, S. and R. Hinden, "Internet Protocol, Version
6, (IPv6) Specification", RFC 2460, December 1998.

[IPv6-ADDR] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.

[IPv6-DISC] Narten, T., Nordmark, E. and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)", RFC 2461, December
1998.

[RFC-792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

[RFC-1122] Braden, R., "Requirements for Internet Hosts -
Communication Layers", STD 5, RFC 1122, August 1989.

[PMTU] McCann, J., Deering, S. and J. Mogul, "Path MTU
Discovery for IP version 6", RFC 1981, August 1996.

[RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[IPv6-SA] Kent, S. and R. Atkinson, "Security Architecture for the
Internet Protocol", RFC 2401, November 1998.

[IPv6-Auth] Kent, S. and R. Atkinson, "IP Authentication Header",
RFC 2402, November 1998.

[IPv6-ESP] Kent, S. and R. Atkinson, "IP Encapsulating Security
Protocol (ESP)", RFC 2406, November 1998.

7. Acknowledgments


The document is derived from previous ICMP drafts of the SIPP and
IPng working group.

The IPng working group and particularly Robert Elz, Jim Bound, Bill
Simpson, Thomas Narten, Charlie Lynn, Bill Fink, Scott Bradner,
Dimitri Haskin, and Bob Hinden (in chronological order) provided
extensive review information and feedback.

8. Authors' Addresses


Alex Conta
Lucent Technologies Inc.
300 Baker Ave, Suite 100
Concord, MA 01742
USA

Phone: +1 978 287-2842
EMail: aconta@lucent.com

Stephen Deering
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA

Phone: +1 408 527-8213
EMail: deering@cisco.com

Appendix A - Changes from RFC 1885


Version 2-02

- Excluded mentioning informational replies from paragraph (f.2) of
section 2.4.
- In "Upper layer notification" sections changed "upper-layer
protocol" and "User Interface" to "process".
- Changed section 5.2, item 2 and 3 to also refer to AH
authentication.
- Removed item 5. from section 5.2 on denial of service attacks.
- Updated phone numbers and Email addresses in the "Authors'
Addresses" section.

Version 2-01

- Replaced all references to "576 octets" as the maximum for an ICMP
message size with "minimum IPv6 MTU" as defined by the base IPv6
specification.
- Removed rate control from informational messages.
- Added requirement that receivers ignore Code value in Packet Too
Big message.
- Removed "Not a Neighbor" (code 2) from destination unreachable
message.
- Fixed typos and update references.

Version 2-00

- Applied rate control to informational messages
- Removed section 2.4 on Group Management ICMP messages
- Removed references to IGMP in Abstract and Section 1.
- Updated references to other IPv6 documents
- Removed references to RFC-1112 in Abstract, and Section 1, and to
RFC-1191 in section 1, and section 3.2
- Added security section
- Added Appendix A - changes

Full Copyright Statement


Copyright (C) The Internet Society (1998). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


RFC 1981 – Path MTU Discovery for IP version 6

 
Network Working Group                                          J. McCann
Request for Comments: 1981 Digital Equipment Corporation
Category: Standards Track S. Deering
Xerox PARC
J. Mogul
Digital Equipment Corporation
August 1996

Path MTU Discovery for IP version 6

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document describes Path MTU Discovery for IP version 6. It is
largely derived from RFC 1191, which describes Path MTU Discovery for
IP version 4.

Table of Contents

1. Introduction.................................................2
2. Terminology..................................................2
3. Protocol overview............................................3
4. Protocol Requirements........................................4
5. Implementation Issues........................................5
5.1. Layering...................................................5
5.2. Storing PMTU information...................................6
5.3. Purging stale PMTU information.............................8
5.4. TCP layer actions..........................................9
5.5. Issues for other transport protocols......................11
5.6. Management interface......................................12
6. Security Considerations.....................................12
Acknowledgements...............................................13
Appendix A - Comparison to RFC 1191............................14
References.....................................................14
Authors' Addresses.............................................15

1. Introduction

When one IPv6 node has a large amount of data to send to another
node, the data is transmitted in a series of IPv6 packets. It is
usually preferable that these packets be of the largest size that can
successfully traverse the path from the source node to the
destination node. This packet size is referred to as the Path MTU
(PMTU), and it is equal to the minimum link MTU of all the links in a
path. IPv6 defines a standard mechanism for a node to discover the
PMTU of an arbitrary path.

IPv6 nodes SHOULD implement Path MTU Discovery in order to discover
and take advantage of paths with PMTU greater than the IPv6 minimum
link MTU [IPv6-SPEC]. A minimal IPv6 implementation (e.g., in a boot
ROM) may choose to omit implementation of Path MTU Discovery.

Nodes not implementing Path MTU Discovery use the IPv6 minimum link
MTU defined in [IPv6-SPEC] as the maximum packet size. In most
cases, this will result in the use of smaller packets than necessary,
because most paths have a PMTU greater than the IPv6 minimum link
MTU. A node sending packets much smaller than the Path MTU allows is
wasting network resources and probably getting suboptimal throughput.

2. Terminology

node - a device that implements IPv6.

router - a node that forwards IPv6 packets not explicitly
addressed to itself.

host - any node that is not a router.

upper layer - a protocol layer immediately above IPv6. Examples are
transport protocols such as TCP and UDP, control
protocols such as ICMP, routing protocols such as OSPF,
and internet or lower-layer protocols being "tunneled"
over (i.e., encapsulated in) IPv6 such as IPX,
AppleTalk, or IPv6 itself.

link - a communication facility or medium over which nodes can
communicate at the link layer, i.e., the layer
immediately below IPv6. Examples are Ethernets (simple
or bridged); PPP links; X.25, Frame Relay, or ATM
networks; and internet (or higher) layer "tunnels",
such as tunnels over IPv4 or IPv6 itself.

interface - a node's attachment to a link.

address - an IPv6-layer identifier for an interface or a set of
interfaces.

packet - an IPv6 header plus payload.

link MTU - the maximum transmission unit, i.e., maximum packet
size in octets, that can be conveyed in one piece over
a link.

path - the set of links traversed by a packet between a source
node and a destination node

path MTU - the minimum link MTU of all the links in a path between
a source node and a destination node.

PMTU - path MTU

Path MTU
Discovery - process by which a node learns the PMTU of a path

flow - a sequence of packets sent from a particular source
to a particular (unicast or multicast) destination for
which the source desires special handling by the
intervening routers.

flow id - a combination of a source address and a non-zero
flow label.

3. Protocol overview

This memo describes a technique to dynamically discover the PMTU of a
path. The basic idea is that a source node initially assumes that
the PMTU of a path is the (known) MTU of the first hop in the path.
If any of the packets sent on that path are too large to be forwarded
by some node along the path, that node will discard them and return
ICMPv6 Packet Too Big messages [ICMPv6]. Upon receipt of such a
message, the source node reduces its assumed PMTU for the path based
on the MTU of the constricting hop as reported in the Packet Too Big
message.

The Path MTU Discovery process ends when the node's estimate of the
PMTU is less than or equal to the actual PMTU. Note that several
iterations of the packet-sent/Packet-Too-Big-message-received cycle
may occur before the Path MTU Discovery process ends, as there may be
links with smaller MTUs further along the path.

Alternatively, the node may elect to end the discovery process by
ceasing to send packets larger than the IPv6 minimum link MTU.

The PMTU of a path may change over time, due to changes in the
routing topology. Reductions of the PMTU are detected by Packet Too
Big messages. To detect increases in a path's PMTU, a node
periodically increases its assumed PMTU. This will almost always
result in packets being discarded and Packet Too Big messages being
generated, because in most cases the PMTU of the path will not have
changed. Therefore, attempts to detect increases in a path's PMTU
should be done infrequently.

Path MTU Discovery supports multicast as well as unicast
destinations. In the case of a multicast destination, copies of a
packet may traverse many different paths to many different nodes.
Each path may have a different PMTU, and a single multicast packet
may result in multiple Packet Too Big messages, each reporting a
different next-hop MTU. The minimum PMTU value across the set of
paths in use determines the size of subsequent packets sent to the
multicast destination.

Note that Path MTU Discovery must be performed even in cases where a
node "thinks" a destination is attached to the same link as itself.
In a situation such as when a neighboring router acts as proxy [ND]
for some destination, the destination can to appear to be directly
connected but is in fact more than one hop away.

4. Protocol Requirements

As discussed in section 1, IPv6 nodes are not required to implement
Path MTU Discovery. The requirements in this section apply only to
those implementations that include Path MTU Discovery.

When a node receives a Packet Too Big message, it MUST reduce its
estimate of the PMTU for the relevant path, based on the value of the
MTU field in the message. The precise behavior of a node in this
circumstance is not specified, since different applications may have
different requirements, and since different implementation
architectures may favor different strategies.

After receiving a Packet Too Big message, a node MUST attempt to
avoid eliciting more such messages in the near future. The node MUST
reduce the size of the packets it is sending along the path. Using a
PMTU estimate larger than the IPv6 minimum link MTU may continue to
elicit Packet Too Big messages. Since each of these messages (and
the dropped packets they respond to) consume network resources, the
node MUST force the Path MTU Discovery process to end.

Nodes using Path MTU Discovery MUST detect decreases in PMTU as fast
as possible. Nodes MAY detect increases in PMTU, but because doing
so requires sending packets larger than the current estimated PMTU,

and because the likelihood is that the PMTU will not have increased,
this MUST be done at infrequent intervals. An attempt to detect an
increase (by sending a packet larger than the current estimate) MUST
NOT be done less than 5 minutes after a Packet Too Big message has
been received for the given path. The recommended setting for this
timer is twice its minimum value (10 minutes).

A node MUST NOT reduce its estimate of the Path MTU below the IPv6
minimum link MTU.

Note: A node may receive a Packet Too Big message reporting a
next-hop MTU that is less than the IPv6 minimum link MTU. In that
case, the node is not required to reduce the size of subsequent
packets sent on the path to less than the IPv6 minimun link MTU,
but rather must include a Fragment header in those packets [IPv6-
SPEC].

A node MUST NOT increase its estimate of the Path MTU in response to
the contents of a Packet Too Big message. A message purporting to
announce an increase in the Path MTU might be a stale packet that has
been floating around in the network, a false packet injected as part
of a denial-of-service attack, or the result of having multiple paths
to the destination, each with a different PMTU.

5. Implementation Issues

This section discusses a number of issues related to the
implementation of Path MTU Discovery. This is not a specification,
but rather a set of notes provided as an aid for implementors.

The issues include:

- What layer or layers implement Path MTU Discovery?

- How is the PMTU information cached?

- How is stale PMTU information removed?

- What must transport and higher layers do?

5.1. Layering

In the IP architecture, the choice of what size packet to send is
made by a protocol at a layer above IP. This memo refers to such a
protocol as a "packetization protocol". Packetization protocols are
usually transport protocols (for example, TCP) but can also be
higher-layer protocols (for example, protocols built on top of UDP).

Implementing Path MTU Discovery in the packetization layers
simplifies some of the inter-layer issues, but has several drawbacks:
the implementation may have to be redone for each packetization
protocol, it becomes hard to share PMTU information between different
packetization layers, and the connection-oriented state maintained by
some packetization layers may not easily extend to save PMTU
information for long periods.

It is therefore suggested that the IP layer store PMTU information
and that the ICMP layer process received Packet Too Big messages.
The packetization layers may respond to changes in the PMTU, by
changing the size of the messages they send. To support this
layering, packetization layers require a way to learn of changes in
the value of MMS_S, the "maximum send transport-message size". The
MMS_S is derived from the Path MTU by subtracting the size of the
IPv6 header plus space reserved by the IP layer for additional
headers (if any).

It is possible that a packetization layer, perhaps a UDP application
outside the kernel, is unable to change the size of messages it
sends. This may result in a packet size that exceeds the Path MTU.
To accommodate such situations, IPv6 defines a mechanism that allows
large payloads to be divided into fragments, with each fragment sent
in a separate packet (see [IPv6-SPEC] section "Fragment Header").
However, packetization layers are encouraged to avoid sending
messages that will require fragmentation (for the case against
fragmentation, see [FRAG]).

5.2. Storing PMTU information

Ideally, a PMTU value should be associated with a specific path
traversed by packets exchanged between the source and destination
nodes. However, in most cases a node will not have enough
information to completely and accurately identify such a path.
Rather, a node must associate a PMTU value with some local
representation of a path. It is left to the implementation to select
the local representation of a path.

In the case of a multicast destination address, copies of a packet
may traverse many different paths to reach many different nodes. The
local representation of the "path" to a multicast destination must in
fact represent a potentially large set of paths.

Minimally, an implementation could maintain a single PMTU value to be
used for all packets originated from the node. This PMTU value would
be the minimum PMTU learned across the set of all paths in use by the
node. This approach is likely to result in the use of smaller
packets than is necessary for many paths.

An implementation could use the destination address as the local
representation of a path. The PMTU value associated with a
destination would be the minimum PMTU learned across the set of all
paths in use to that destination. The set of paths in use to a
particular destination is expected to be small, in many cases
consisting of a single path. This approach will result in the use of
optimally sized packets on a per-destination basis. This approach
integrates nicely with the conceptual model of a host as described in
[ND]: a PMTU value could be stored with the corresponding entry in
the destination cache.

If flows [IPv6-SPEC] are in use, an implementation could use the flow
id as the local representation of a path. Packets sent to a
particular destination but belonging to different flows may use
different paths, with the choice of path depending on the flow id.
This approach will result in the use of optimally sized packets on a
per-flow basis, providing finer granularity than PMTU values
maintained on a per-destination basis.

For source routed packets (i.e. packets containing an IPv6 Routing
header [IPv6-SPEC]), the source route may further qualify the local
representation of a path. In particular, a packet containing a type
0 Routing header in which all bits in the Strict/Loose Bit Map are
equal to 1 contains a complete path specification. An implementation
could use source route information in the local representation of a
path.

Note: Some paths may be further distinguished by different
security classifications. The details of such classifications are
beyond the scope of this memo.

Initially, the PMTU value for a path is assumed to be the (known) MTU
of the first-hop link.

When a Packet Too Big message is received, the node determines which
path the message applies to based on the contents of the Packet Too
Big message. For example, if the destination address is used as the
local representation of a path, the destination address from the
original packet would be used to determine which path the message
applies to.

Note: if the original packet contained a Routing header, the
Routing header should be used to determine the location of the
destination address within the original packet. If Segments Left
is equal to zero, the destination address is in the Destination
Address field in the IPv6 header. If Segments Left is greater
than zero, the destination address is the last address
(Address[n]) in the Routing header.

The node then uses the value in the MTU field in the Packet Too Big
message as a tentative PMTU value, and compares the tentative PMTU to
the existing PMTU. If the tentative PMTU is less than the existing
PMTU estimate, the tentative PMTU replaces the existing PMTU as the
PMTU value for the path.

The packetization layers must be notified about decreases in the
PMTU. Any packetization layer instance (for example, a TCP
connection) that is actively using the path must be notified if the
PMTU estimate is decreased.

Note: even if the Packet Too Big message contains an Original
Packet Header that refers to a UDP packet, the TCP layer must be
notified if any of its connections use the given path.

Also, the instance that sent the packet that elicited the Packet Too
Big message should be notified that its packet has been dropped, even
if the PMTU estimate has not changed, so that it may retransmit the
dropped data.

Note: An implementation can avoid the use of an asynchronous
notification mechanism for PMTU decreases by postponing
notification until the next attempt to send a packet larger than
the PMTU estimate. In this approach, when an attempt is made to
SEND a packet that is larger than the PMTU estimate, the SEND
function should fail and return a suitable error indication. This
approach may be more suitable to a connectionless packetization
layer (such as one using UDP), which (in some implementations) may
be hard to "notify" from the ICMP layer. In this case, the normal
timeout-based retransmission mechanisms would be used to recover
from the dropped packets.

It is important to understand that the notification of the
packetization layer instances using the path about the change in the
PMTU is distinct from the notification of a specific instance that a
packet has been dropped. The latter should be done as soon as
practical (i.e., asynchronously from the point of view of the
packetization layer instance), while the former may be delayed until
a packetization layer instance wants to create a packet.
Retransmission should be done for only for those packets that are
known to be dropped, as indicated by a Packet Too Big message.

5.3. Purging stale PMTU information

Internetwork topology is dynamic; routes change over time. While the
local representation of a path may remain constant, the actual
path(s) in use may change. Thus, PMTU information cached by a node
can become stale.

If the stale PMTU value is too large, this will be discovered almost
immediately once a large enough packet is sent on the path. No such
mechanism exists for realizing that a stale PMTU value is too small,
so an implementation should "age" cached values. When a PMTU value
has not been decreased for a while (on the order of 10 minutes), the
PMTU estimate should be set to the MTU of the first-hop link, and the
packetization layers should be notified of the change. This will
cause the complete Path MTU Discovery process to take place again.

Note: an implementation should provide a means for changing the
timeout duration, including setting it to "infinity". For
example, nodes attached to an FDDI link which is then attached to
the rest of the Internet via a small MTU serial line are never
going to discover a new non-local PMTU, so they should not have to
put up with dropped packets every 10 minutes.

An upper layer must not retransmit data in response to an increase in
the PMTU estimate, since this increase never comes in response to an
indication of a dropped packet.

One approach to implementing PMTU aging is to associate a timestamp
field with a PMTU value. This field is initialized to a "reserved"
value, indicating that the PMTU is equal to the MTU of the first hop
link. Whenever the PMTU is decreased in response to a Packet Too Big
message, the timestamp is set to the current time.

Once a minute, a timer-driven procedure runs through all cached PMTU
values, and for each PMTU whose timestamp is not "reserved" and is
older than the timeout interval:

- The PMTU estimate is set to the MTU of the first hop link.

- The timestamp is set to the "reserved" value.

- Packetization layers using this path are notified of the increase.

5.4. TCP layer actions

The TCP layer must track the PMTU for the path(s) in use by a
connection; it should not send segments that would result in packets
larger than the PMTU. A simple implementation could ask the IP layer
for this value each time it created a new segment, but this could be
inefficient. Moreover, TCP implementations that follow the "slow-
start" congestion-avoidance algorithm [CONG] typically calculate and
cache several other values derived from the PMTU. It may be simpler
to receive asynchronous notification when the PMTU changes, so that
these variables may be updated.

A TCP implementation must also store the MSS value received from its
peer, and must not send any segment larger than this MSS, regardless
of the PMTU. In 4.xBSD-derived implementations, this may require
adding an additional field to the TCP state record.

The value sent in the TCP MSS option is independent of the PMTU.
This MSS option value is used by the other end of the connection,
which may be using an unrelated PMTU value. See [IPv6-SPEC] sections
"Packet Size Issues" and "Maximum Upper-Layer Payload Size" for
information on selecting a value for the TCP MSS option.

When a Packet Too Big message is received, it implies that a packet
was dropped by the node that sent the ICMP message. It is sufficient
to treat this as any other dropped segment, and wait until the
retransmission timer expires to cause retransmission of the segment.
If the Path MTU Discovery process requires several steps to find the
PMTU of the full path, this could delay the connection by many
round-trip times.

Alternatively, the retransmission could be done in immediate response
to a notification that the Path MTU has changed, but only for the
specific connection specified by the Packet Too Big message. The
packet size used in the retransmission should be no larger than the
new PMTU.

Note: A packetization layer must not retransmit in response to
every Packet Too Big message, since a burst of several oversized
segments will give rise to several such messages and hence several
retransmissions of the same data. If the new estimated PMTU is
still wrong, the process repeats, and there is an exponential
growth in the number of superfluous segments sent.

This means that the TCP layer must be able to recognize when a
Packet Too Big notification actually decreases the PMTU that it
has already used to send a packet on the given connection, and
should ignore any other notifications.

Many TCP implementations incorporate "congestion avoidance" and
"slow-start" algorithms to improve performance [CONG]. Unlike a
retransmission caused by a TCP retransmission timeout, a
retransmission caused by a Packet Too Big message should not change
the congestion window. It should, however, trigger the slow-start
mechanism (i.e., only one segment should be retransmitted until
acknowledgements begin to arrive again).

TCP performance can be reduced if the sender's maximum window size is
not an exact multiple of the segment size in use (this is not the
congestion window size, which is always a multiple of the segment

size). In many systems (such as those derived from 4.2BSD), the
segment size is often set to 1024 octets, and the maximum window size
(the "send space") is usually a multiple of 1024 octets, so the
proper relationship holds by default. If Path MTU Discovery is used,
however, the segment size may not be a submultiple of the send space,
and it may change during a connection; this means that the TCP layer
may need to change the transmission window size when Path MTU
Discovery changes the PMTU value. The maximum window size should be
set to the greatest multiple of the segment size that is less than or
equal to the sender's buffer space size.

5.5. Issues for other transport protocols

Some transport protocols (such as ISO TP4 [ISOTP]) are not allowed to
repacketize when doing a retransmission. That is, once an attempt is
made to transmit a segment of a certain size, the transport cannot
split the contents of the segment into smaller segments for
retransmission. In such a case, the original segment can be
fragmented by the IP layer during retransmission. Subsequent
segments, when transmitted for the first time, should be no larger
than allowed by the Path MTU.

The Sun Network File System (NFS) uses a Remote Procedure Call (RPC)
protocol [RPC] that, when used over UDP, in many cases will generate
payloads that must be fragmented even for the first-hop link. This
might improve performance in certain cases, but it is known to cause
reliability and performance problems, especially when the client and
server are separated by routers.

It is recommended that NFS implementations use Path MTU Discovery
whenever routers are involved. Most NFS implementations allow the
RPC datagram size to be changed at mount-time (indirectly, by
changing the effective file system block size), but might require
some modification to support changes later on.

Also, since a single NFS operation cannot be split across several UDP
datagrams, certain operations (primarily, those operating on file
names and directories) require a minimum payload size that if sent in
a single packet would exceed the PMTU. NFS implementations should
not reduce the payload size below this threshold, even if Path MTU
Discovery suggests a lower value. In this case the payload will be
fragmented by the IP layer.

5.6. Management interface

It is suggested that an implementation provide a way for a system
utility program to:

- Specify that Path MTU Discovery not be done on a given path.

- Change the PMTU value associated with a given path.

The former can be accomplished by associating a flag with the path;
when a packet is sent on a path with this flag set, the IP layer does
not send packets larger than the IPv6 minimum link MTU.

These features might be used to work around an anomalous situation,
or by a routing protocol implementation that is able to obtain Path
MTU values.

The implementation should also provide a way to change the timeout
period for aging stale PMTU information.

6. Security Considerations

This Path MTU Discovery mechanism makes possible two denial-of-
service attacks, both based on a malicious party sending false Packet
Too Big messages to a node.

In the first attack, the false message indicates a PMTU much smaller
than reality. This should not entirely stop data flow, since the
victim node should never set its PMTU estimate below the IPv6 minimum
link MTU. It will, however, result in suboptimal performance.

In the second attack, the false message indicates a PMTU larger than
reality. If believed, this could cause temporary blockage as the
victim sends packets that will be dropped by some router. Within one
round-trip time, the node would discover its mistake (receiving
Packet Too Big messages from that router), but frequent repetition of
this attack could cause lots of packets to be dropped. A node,
however, should never raise its estimate of the PMTU based on a
Packet Too Big message, so should not be vulnerable to this attack.

A malicious party could also cause problems if it could stop a victim
from receiving legitimate Packet Too Big messages, but in this case
there are simpler denial-of-service attacks available.

Acknowledgements

We would like to acknowledge the authors of and contributors to
[RFC-1191], from which the majority of this document was derived. We
would also like to acknowledge the members of the IPng working group
for their careful review and constructive criticisms.

Appendix A - Comparison to RFC 1191

This document is based in large part on RFC 1191, which describes
Path MTU Discovery for IPv4. Certain portions of RFC 1191 were not
needed in this document:

router specification - Packet Too Big messages and corresponding
router behavior are defined in [ICMPv6]

Don't Fragment bit - there is no DF bit in IPv6 packets

TCP MSS discussion - selecting a value to send in the TCP MSS
option is discussed in [IPv6-SPEC]

old-style messages - all Packet Too Big messages report the
MTU of the constricting link

MTU plateau tables - not needed because there are no old-style
messages

References

[CONG] Van Jacobson. Congestion Avoidance and Control. Proc.
SIGCOMM '88 Symposium on Communications Architectures and
Protocols, pages 314-329. Stanford, CA, August, 1988.

[FRAG] C. Kent and J. Mogul. Fragmentation Considered Harmful.
In Proc. SIGCOMM '87 Workshop on Frontiers in Computer
Communications Technology. August, 1987.

[ICMPv6] Conta, A., and S. Deering, "Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification", RFC 1885, December 1995.

[IPv6-SPEC] Deering, S., and R. Hinden, "Internet Protocol, Version
6 (IPv6) Specification", RFC 1883, December 1995.

[ISOTP] ISO. ISO Transport Protocol Specification: ISO DP 8073.
RFC 905, SRI Network Information Center, April, 1984.

[ND] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)", Work in Progress.

[RFC-1191] Mogul, J., and S. Deering, "Path MTU Discovery",
RFC 1191, November 1990.

[RPC] Sun Microsystems, Inc., "RPC: Remote Procedure Call
Protocol", RFC 1057, SRI Network Information Center,
June, 1988.

Authors' Addresses

Jack McCann
Digital Equipment Corporation
110 Spitbrook Road, ZKO3-3/U14
Nashua, NH 03062
Phone: +1 603 881 2608

Fax: +1 603 881 0120
Email: mccann@zk3.dec.com

Stephen E. Deering
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
Phone: +1 415 812 4839

Fax: +1 415 812 4471
EMail: deering@parc.xerox.com

Jeffrey Mogul
Digital Equipment Corporation Western Research Laboratory
250 University Avenue
Palo Alto, CA 94301
Phone: +1 415 617 3304

EMail: mogul@pa.dec.com